Mutable.ai logo
 Auto Wiki by Mutable.ai
Create your own wiki
AI-generated instantly
Updates automatically
Solo and team plans

llama.cpp

Auto-generated from ggerganov/llama.cpp by Mutable.ai Auto Wiki
llama.cpp
GitHub Repository
Developerggerganov
Written inC++
Stars57k
Watchers505
Created03/10/2023
Last updated04/29/2024
LicenseMIT
Repositoryggerganov/llama.cpp
Auto Wiki
Revision
Software Versionp-0.0.4Premium
Generated fromCommit b8c147
Generated at04/29/2024
• • •
Architecture Diagram for llama.cpp
Architecture Diagram for llama.cpp

The llama.cpp repository provides a C/C++ implementation for inference with large language models (LLMs), offering a practical solution for engineers seeking to integrate advanced natural language processing capabilities into their applications. It addresses the real-world problem of efficiently running LLMs on various hardware platforms, including both CPUs and GPUs, by providing optimized code for model inference, quantization, and hardware acceleration.

The most significant parts of the repo include the core language model support in llama.cpp, the model conversion and quantization tools in .devops, and the server functionality in …/server. With the largest file count, the examples directory showcases the versatility of the library through a wide array of example programs and tools that demonstrate text generation, fine-tuning, benchmarking, and multimodal applications.

Key functionalities of the codebase are:

  • Support for a wide range of LLMs, including various versions and derivatives of the LLaMA model, as described in the llama.cpp directory.
  • A lightweight HTTP server compatible with the OpenAI API, enabling users to serve local models and connect them to existing clients, as detailed in …/server.
  • Language bindings for several programming languages, allowing for integration into diverse software ecosystems.

The code relies on several key algorithms and technologies, including:

  • Quantization methods to reduce memory usage and improve inference speed, as implemented in the tools.sh script within .devops.
  • Hardware acceleration support for multiple platforms, ensuring optimal performance across different devices.
  • A grammar parser to constrain the model's output, ensuring that generated text adheres to specified formats or rules.

Key design choices in the code include:

  • The use of Docker to create isolated environments for building and running the Llama project, which simplifies the deployment process and ensures consistency across different systems.
  • The provision of a command-line interface in the tools.sh script for easy access to common operations such as model conversion and quantization.
  • The implementation of a persistent interaction feature, allowing users to save and resume chat sessions across multiple calls to the main program.

For more details on the example programs and tools, refer to the Example Programs and Tools section. Information on model conversion and quantization can be found in the Model Conversion and Quantization section. Details on the server functionality are available in the Server Functionality section.

Language Model Support

References: llama.cpp

The Llama language model is designed to support a variety of large language models, with a framework that accommodates different model architectures. The core implementation focuses on the initialization, training, and deployment of these models, emphasizing modularity and performance.

Read more

Example Programs and Tools

References: examples

The examples directory showcases a variety of example programs and tools that demonstrate the capabilities of the LLaMA language model. These examples serve as practical demonstrations of the model's functionalities, ranging from text generation to fine-tuning and benchmarking.

Read more

Model Initialization and Training

• • •
Architecture Diagram for Model Initialization and Training
Architecture Diagram for Model Initialization and Training

Initialization and training of the LLaMA model involve setting up model parameters, training on custom datasets, and saving the trained model. The process starts with defining hyperparameters and initializing the model's tensors. For example, init_model() and init_model_lora() initialize the LLaMA and LORA models respectively, creating tensors for embeddings, normalization, and layers. Parameters are marked as trainable using set_param_model() and set_param_model_lora(), and randomized with randomize_model() and randomize_model_lora().

Read more

Text Generation and Sampling Techniques

• • •
Architecture Diagram for Text Generation and Sampling Techniques
Architecture Diagram for Text Generation and Sampling Techniques

The LLaMA model leverages various sampling techniques to generate text that is coherent and contextually relevant. These techniques include top-k, top-p, and temperature sampling, which are integral to the model's ability to produce high-quality language outputs.

Read more

Multimodal Language Model Support

References: examples/llava

• • •
Architecture Diagram for Multimodal Language Model Support
Architecture Diagram for Multimodal Language Model Support

The LLaVA model, encapsulated within the …/llava directory, is a multimodal language model capable of processing both text and image inputs. It integrates the CLIP model for image understanding, which is essential for the multimodal capabilities of LLaVA.

Read more

Language Model Evaluation and Benchmarking

• • •
Architecture Diagram for Language Model Evaluation and Benchmarking
Architecture Diagram for Language Model Evaluation and Benchmarking

Benchmarking the LLaMA language model involves evaluating matrix multiplication performance using the GGML library, as seen in …/benchmark. The benchmark program in benchmark-matmult.cpp supports both floating-point (F32) and quantized (Q4_1) data types. Users can specify the number of threads and iterations for the benchmark, allowing for performance tuning and scalability testing.

Read more

Language Model Fine-Tuning Techniques

• • •
Architecture Diagram for Language Model Fine-Tuning Techniques
Architecture Diagram for Language Model Fine-Tuning Techniques

Fine-tuning a pre-trained LLaMA language model is achieved through the application of Low-Rank Adaptation (LoRA) adapters, which are designed to adapt the model to specific tasks or datasets. The process involves the following key steps:

Read more

Language Model Server Implementation

References: examples/server

The server-side application located in …/server provides a REST API for interacting with the LLaMA language model. The server is built using the httplib library for HTTP server functionality and nlohmann::json for JSON handling. It integrates with the llama.cpp library to offer LLM inference capabilities.

Read more

Android and SwiftUI Implementations

• • •
Architecture Diagram for Android and SwiftUI Implementations
Architecture Diagram for Android and SwiftUI Implementations

The Android implementation of the LLaMA language model is encapsulated within the …/llama.android directory, which includes the necessary components for the Android application. The MainActivity serves as the entry point, setting up the user interface with Jetpack Compose and managing the application's state. It interacts with the MainViewModel, which orchestrates the UI logic and communication with the LLaMA model for operations such as sending messages and benchmarking.

Read more

Model Conversion and Quantization

References: .devops

• • •
Architecture Diagram for Model Conversion and Quantization
Architecture Diagram for Model Conversion and Quantization

Conversion and quantization of models within the Llama project are managed using the tools.sh script located at …/tools.sh. This script serves as an interface for executing key operations such as model format conversion and model optimization through quantization.

Read more

Model Format Conversion

References: .devops/tools.sh

• • •
Architecture Diagram for Model Format Conversion
Architecture Diagram for Model Format Conversion

The tools.sh script located at …/tools.sh manages the conversion of the Llama model from PyTorch (PTH) format to the GGML format, a necessary step before the model can be quantized or executed within the project's ecosystem. The conversion is initiated through the --convert or -c command-line argument, which triggers the execution of the convert.py script with the provided arguments.

Read more

Model Quantization

References: .devops/tools.sh

• • •
Architecture Diagram for Model Quantization
Architecture Diagram for Model Quantization

Quantization in the llama.cpp codebase is a process designed to optimize the GGML model by reducing its size and potentially increasing inference speed, with a focus on maintaining accuracy. The script …/tools.sh provides a command-line interface to facilitate this process with the --quantize or -q option.

Read more

Combined Conversion and Quantization Workflow

References: .devops/tools.sh

• • •
Architecture Diagram for Combined Conversion and Quantization Workflow
Architecture Diagram for Combined Conversion and Quantization Workflow

The --all-in-one operation in …/tools.sh script automates the workflow of converting a Llama model from PyTorch format to GGML and then applying quantization. This operation is designed to simplify the process for users by combining two distinct steps into a single command execution.

Read more

Environment Setup for Conversion and Quantization

• • •
Architecture Diagram for Environment Setup for Conversion and Quantization
Architecture Diagram for Environment Setup for Conversion and Quantization

Docker build files such as …/full-cuda.Dockerfile, …/full-rocm.Dockerfile, and …/full.Dockerfile are utilized to create tailored environments for the conversion and quantization of models, accommodating various hardware accelerations like CUDA and ROCm. These environments are essential for ensuring that the conversion and quantization processes can be executed efficiently and are compatible with the target hardware configurations.

Read more

Hardware Acceleration Support

References: llama.cpp

Support for hardware acceleration is a critical aspect of the llama.cpp project, enabling the LLaMA language model to leverage GPUs and CPUs for improved performance. The project includes various tools and scripts that facilitate the use of hardware acceleration:

Read more

Docker Environment Setup for Hardware Acceleration

• • •
Architecture Diagram for Docker Environment Setup for Hardware Acceleration
Architecture Diagram for Docker Environment Setup for Hardware Acceleration

Docker build files within the .devops directory are tailored for various hardware acceleration technologies, ensuring the Llama project can leverage the full potential of different hardware platforms. The Dockerfiles are designed to create environments that support CUDA, ROCm, Intel OneAPI, and Vulkan, each catering to specific hardware acceleration needs.

Read more

SYCL Support for Intel GPUs

References: examples/sycl

• • •
Architecture Diagram for SYCL Support for Intel GPUs
Architecture Diagram for SYCL Support for Intel GPUs

The …/sycl directory equips developers with tools for leveraging SYCL, a high-level programming model, on Intel GPUs within the llama.cpp library context. The primary utility, ls-sycl-device, serves to enumerate SYCL-compatible devices, providing insights into their capabilities such as compute units and memory size.

Read more

Server-Side Application with Hardware Acceleration

References: examples/server

• • •
Architecture Diagram for Server-Side Application with Hardware Acceleration
Architecture Diagram for Server-Side Application with Hardware Acceleration

The server-side application, located at …/server, provides a REST API for interacting with the LLaMA language model. It is designed to support LLM inference of F16 and quantum models on both GPU and CPU hardware. The application is built using the httplib library for HTTP server functionality and the nlohmann::json library for JSON data handling, ensuring efficient communication and data exchange.

Read more

Quantization Techniques for Model Optimization

References: examples/quantize

• • •
Architecture Diagram for Quantization Techniques for Model Optimization
Architecture Diagram for Quantization Techniques for Model Optimization

The quantize.cpp file within …/quantize equips users with a command-line interface to apply quantization to pre-trained LLaMA models. The quantization process is crucial for optimizing the model to efficiently run on various hardware platforms by reducing the model size and memory footprint.

Read more

Android Support for LLaMA Model

The Android platform integration for the LLaMA model is facilitated through the …/cpp directory, which houses the C++ source code necessary for the model's operation on Android devices. The implementation ensures that the model can leverage the hardware acceleration features available on these devices for efficient inference.

Read more

Server Functionality

References: examples/server

• • •
Architecture Diagram for Server Functionality
Architecture Diagram for Server Functionality

Routes for handling REST API requests are managed by the server.cpp file, which utilizes the httplib library to create a lightweight HTTP server. The server is designed to be compatible with the OpenAI API, offering similar endpoints and functionalities. The server's API includes endpoints for health checks, text completion, tokenization, embeddings, and more, as detailed in the REST API Endpoints and Functionality section.

Read more

Server Setup and Configuration

The server is built using a CMakeLists.txt file located at …/CMakeLists.txt, which specifies the target name as server. During the build process, users can toggle options such as LLAMA_SERVER_VERBOSE for verbose logging and LLAMA_SERVER_SSL for enabling SSL support. The build process involves compiling source files including server.cpp, utils.hpp, and httplib.h. Additionally, public asset files like index.html, index.js, completion.js, and json-schema-to-grammar.mjs are converted into C++ header files and included in the build.

Read more

REST API Endpoints and Functionality

• • •
Architecture Diagram for REST API Endpoints and Functionality
Architecture Diagram for REST API Endpoints and Functionality

The server leverages httplib and nlohmann::json to provide a RESTful API, interfacing with the llama.cpp library to deliver a range of language model functionalities. The API endpoints include:

Read more

Server-Side Benchmarking

• • •
Architecture Diagram for Server-Side Benchmarking
Architecture Diagram for Server-Side Benchmarking

Benchmarking the server-side application involves a set of tools and scripts located in …/bench. The primary tool used for load testing is k6, which is extended with the xk6-sse module to enable server-sent events (SSE) functionality. The benchmarking process is automated by the bench.py script, which orchestrates the setup, execution, and collection of performance metrics.

Read more

Client-Side Web Application

• • •
Architecture Diagram for Client-Side Web Application
Architecture Diagram for Client-Side Web Application

Interaction with the server for text completions and chat functionality is managed through JavaScript files located in …/public. The main entry point of the web application is index.html, which structures the user interface and includes script references to handle the application logic.

Read more

Server Testing and Validation

• • •
Architecture Diagram for Server Testing and Validation
Architecture Diagram for Server Testing and Validation

Behavior-driven development (BDD) tests for the server application are managed through the Behave framework, leveraging the aiohttp and asyncio libraries for asynchronous HTTP client functionality. The testing process involves a series of steps defined in Python scripts, which are executed to validate the server's behavior against expected outcomes.

Read more

Chat Interaction Scripts

• • •
Architecture Diagram for Chat Interaction Scripts
Architecture Diagram for Chat Interaction Scripts

Bash scripts …/chat-llama2.sh and …/chat.sh facilitate chat-based interactions with an AI assistant. They manage chat prompts, tokenization, and retrieval of AI responses through the server's REST API. Key functionalities include:

Read more

Language Bindings

References: llama.cpp

Language bindings in the llama.cpp project enable interaction with the Llama language model across different programming environments. These bindings facilitate the integration of the Llama model's capabilities into various applications and platforms.

Read more

Python Language Binding

References: gguf-py

• • •
Architecture Diagram for Python Language Binding
Architecture Diagram for Python Language Binding

The gguf-py library provides a Python interface for interacting with the Generalized Graph Universal Format (GGUF), which is a binary format for storing tensors and associated metadata. The library is structured into several components, each handling different aspects of GGUF file manipulation.

Read more

Swift Language Binding

• • •
Architecture Diagram for Swift Language Binding
Architecture Diagram for Swift Language Binding

In the Swift implementation of the Llama language model, the LlamaState class within …/Models manages the lifecycle of the model, including loading and initializing to text generation and benchmarking. The class provides methods such as loadModelsFromDisk(), which scans the documents directory for downloaded models, and loadDefaultModels(), which loads the default model if available or marks it for download.

Read more

C++ Language Binding

The server-side application located in …/server provides a REST API for interacting with the LLaMA language model. The server is built using the httplib library for HTTP server functionality and nlohmann::json for JSON data handling. It integrates with the llama.cpp library to offer LLM inference capabilities.

Read more

Android Language Binding

The Android language binding for the Llama language model is encapsulated within the …/cpp directory, providing a bridge between the native C++ codebase and the Android platform. The binding facilitates several key operations:

Read more

Docker Support for Language Bindings

References: .devops

• • •
Architecture Diagram for Docker Support for Language Bindings
Architecture Diagram for Docker Support for Language Bindings

Docker build files within the .devops directory support the construction, deployment, and execution of the Llama language model project, enabling the use of language bindings in a containerized environment. These Dockerfiles create tailored environments for different hardware accelerations and software configurations, ensuring compatibility with various platforms.

Read more

Persistent Interaction and Constrained Output

References: llama.cpp

• • •
Architecture Diagram for Persistent Interaction and Constrained Output
Architecture Diagram for Persistent Interaction and Constrained Output

Support for persistent interaction in the Llama language model is achieved through the maintenance of conversation state across multiple requests. This allows the model to provide coherent and contextually relevant responses over the course of an interaction. The server-side application utilizes the llama_ngram_cache to store and retrieve n-gram frequencies and associated tokens, which aids in efficient text generation and drafting of potential next tokens.

Read more

Server-Side Application with Grammar Constraints

References: llama.cpp

• • •
Architecture Diagram for Server-Side Application with Grammar Constraints
Architecture Diagram for Server-Side Application with Grammar Constraints

The server-side application in the Llama project provides a REST API for interacting with the LLaMA language model. It integrates grammar constraints to shape the model's output, ensuring that the generated text adheres to predefined grammatical rules or JSON schema formats. The application leverages two key components for parsing and applying these constraints:

Read more

Chat-Based Interaction with Grammar Constraints

• • •
Architecture Diagram for Chat-Based Interaction with Grammar Constraints
Architecture Diagram for Chat-Based Interaction with Grammar Constraints

The scripts …/chat-llama2.sh and …/chat.sh facilitate chat-based interactions with an AI assistant, handling the conversation flow and applying grammar constraints to ensure coherent dialogue. These scripts interact with a server-side API to process user input and generate AI responses.

Read more

Continuous Interaction and Batching Support

References: examples/server

The server application located at …/server supports continuous interaction with the LLaMA language model, enabling a persistent conversation state across multiple requests. This is achieved through the following mechanisms:

Read more

Android and Docker Support

References: llama.cpp

• • •
Architecture Diagram for Android and Docker Support
Architecture Diagram for Android and Docker Support

The Llama project facilitates Android device support through a dedicated application development process, integrating the Llama language model into the Android platform. The core functionality is encapsulated within the Android application's main activity, view model, and user interface components, which are detailed in the Android Application Development subsection.

Read more

Android Application Development

• • •
Architecture Diagram for Android Application Development
Architecture Diagram for Android Application Development

The MainActivity class serves as the entry point for the Llama Android application, orchestrating the user interface and interactions. It utilizes Jetpack Compose to render the UI, which includes a text input field for user messages, buttons for actions like sending messages and benchmarking, and a display for the message history. The activity also manages downloads of machine learning models, providing a list of downloadable items and initiating download processes through the DownloadManager.

Read more

Docker Build Environment

References: .devops

• • •
Architecture Diagram for Docker Build Environment
Architecture Diagram for Docker Build Environment

Docker build files located in .devops are essential for setting up various environments tailored to the needs of the Llama language model project. These environments cater to different hardware acceleration technologies such as CUDA, ROCm, Intel OneAPI, and Vulkan, enabling the project to leverage specific features and optimizations offered by each platform.

Read more

Android C++ Integration

The …/cpp directory integrates the Llama language model with the Android platform, enabling the model's core functionalities such as loading, context management, and text completion to be utilized within Android applications.

Read more

Android UI and Theme Customization

• • •
Architecture Diagram for Android UI and Theme Customization
Architecture Diagram for Android UI and Theme Customization

The Llama Android application's user interface is defined by a theme that includes a color scheme, dynamic color theming, and default text styles. The theme customization is managed through several Kotlin files located in the …/theme directory.

Read more

Android Model Download and Management

• • •
Architecture Diagram for Android Model Download and Management
Architecture Diagram for Android Model Download and Management

The Downloadable data class in …/Downloadable.kt encapsulates the properties of downloadable items, including their name, source URI, and destination file path. It also defines the various states of a download, such as Ready, Downloading, Downloaded, and Error, which are essential for tracking the progress and status of downloads within the Llama Android application.

Read more

Docker Build Files for Android Support

• • •
Architecture Diagram for Docker Build Files for Android Support
Architecture Diagram for Docker Build Files for Android Support

In the "LlamaAndroid" project, the build environment is established through the use of Docker build files, which are crucial for defining the overall structure and settings for Android development. The …/build.gradle.kts file is responsible for setting up the necessary plugins, including the Android application plugin and the Kotlin Android plugin. These plugins are essential for configuring the build process and enabling Kotlin support for the Android application, respectively.

Read more

Continuous Integration Setup

References: ci

• • •
Architecture Diagram for Continuous Integration Setup
Architecture Diagram for Continuous Integration Setup

The Continuous Integration (CI) setup for the Llama project is encapsulated within the ci directory, primarily driven by the run.sh script. This setup is crucial for validating the project's functionality across various hardware configurations, ensuring that the codebase remains stable and performs as expected on different platforms.

Read more

Example Programs and Tools

References: examples

• • •
Architecture Diagram for Example Programs and Tools
Architecture Diagram for Example Programs and Tools

The …/simple directory showcases the tokenization capabilities of the LLaMA model. The tokenize executable, built from tokenize.cpp, accepts a model path and a prompt to tokenize the input text. It demonstrates the initialization of the LLaMA backend, model loading, context creation, and the use of llama_tokenize() to output tokenized text.

Read more

Server-Side Language Model Examples

• • •
Architecture Diagram for Server-Side Language Model Examples
Architecture Diagram for Server-Side Language Model Examples

Routes for the server-side application are managed by the server.cpp file, which utilizes the httplib library to handle HTTP requests and the nlohmann::json library for JSON data manipulation. The server integrates with the llama.cpp library to provide LLM inference functionality.

Read more

Multimodal Language Model Examples

• • •
Architecture Diagram for Multimodal Language Model Examples
Architecture Diagram for Multimodal Language Model Examples

The LLaVA model, encapsulated in …/llava, integrates text and image inputs to provide multimodal language model capabilities. It leverages the CLIP model for image understanding, which is detailed in clip.cpp and clip.h, and combines it with the language understanding of the LLAMA model.

Read more

Language Model Fine-Tuning and Export

• • •
Architecture Diagram for Language Model Fine-Tuning and Export
Architecture Diagram for Language Model Fine-Tuning and Export

Fine-tuning a pre-trained LLaMA language model leverages the Low-Rank Adaptation (LoRA) technique, enabling the model to adapt to specific tasks or datasets while maintaining the original model's parameters largely unchanged. The …/finetune directory contains the necessary scripts and code for this process.

Read more

Text Generation and Decoding Techniques

Batched text generation in …/batched utilizes parallel processing to generate multiple sequences of text simultaneously. The process involves:

Read more

Benchmarking and Performance Evaluation

Benchmarking tools within the LLaMA project are utilized to assess the performance of the language model across various computational tasks. The …/benchmark directory houses a program specifically designed to benchmark matrix multiplication operations, a fundamental operation in neural network computations. The program, benchmark-matmult.cpp, measures the performance in GFLOPS (Giga Floating-Point Operations per Second) for both floating-point (F32) and quantized (Q4_1) data types, providing insights into the efficiency of the model's underlying numerical computations.

Read more

Language Model Utility Tools

• • •
Architecture Diagram for Language Model Utility Tools
Architecture Diagram for Language Model Utility Tools

The …/convert-llama2c-to-ggml directory hosts a tool for converting language models from the llama2.c project to the ggml format. This conversion is essential for compatibility with the ggml library, which is widely used across the Llama project. The tool operates by reading the weights from a llama2.c model and saving them in a ggml-compatible format. It defaults to using the vocabulary from /models/ggml-vocab.bin but allows for custom vocabularies via command-line arguments.

Read more

Language Model Interaction and Embedding

• • •
Architecture Diagram for Language Model Interaction and Embedding
Architecture Diagram for Language Model Interaction and Embedding

Interactive text generation in the LLaMA language model is facilitated through modes like infill and passkey. In the …/infill directory, the infill mode enables users to provide a prefix and suffix, with the model generating text to fill the gap. The infill.cpp program manages this process by:

Read more

Language Model Applications and Extensions

The LLaMA language model extends its capabilities through various applications, including mobile platforms and knowledge testing tools. The …/llama.android directory provides an Android application implementation, enabling the use of the language model on Android devices. Key components include the Llm class for managing the model's lifecycle and the MainActivity class for user interaction. The application's UI is built using Jetpack Compose, with theme customization handled in the …/theme directory.

Read more

Test Suite

References: tests

The test suite for the Llama language model validates the core components essential for the model's operation. The suite includes tests for the automatic release of resources, ensuring that the model and context are properly freed after use, as demonstrated by test-autorelease.cpp. It also verifies the accuracy of type conversions, particularly from double to float, to maintain computational precision as seen in test-double-float.cpp.

Read more

Tokenization Tests

• • •
Architecture Diagram for Tokenization Tests
Architecture Diagram for Tokenization Tests

Tokenization and detokenization are critical components of the Llama language model, ensuring that input strings are correctly converted into tokens that the model can process, and that these tokens can be converted back into human-readable text. The Llama project includes a suite of tests to validate the functionality of its tokenizers, specifically focusing on Byte-Pair Encoding (BPE) and Sentencepiece (SPM) algorithms.

Read more

Quantization Tests

• • •
Architecture Diagram for Quantization Tests
Architecture Diagram for Quantization Tests

Unit tests for the GGML library's quantization functions are encapsulated in …/test-quantize-fns.cpp. These tests validate the accuracy of quantize and dequantize operations and ensure that the dot product computations adhere to predefined error thresholds. The tests involve:

Read more

Sampling Tests

• • •
Architecture Diagram for Sampling Tests
Architecture Diagram for Sampling Tests

Unit tests for the sampling functionality within the Llama language model are encapsulated in …/test-sampling.cpp. These tests validate the robustness of various sampling techniques integral to text generation:

Read more

Grammar Parsing Tests

• • •
Architecture Diagram for Grammar Parsing Tests
Architecture Diagram for Grammar Parsing Tests

The test-grammar-parser.cpp file validates the grammar_parser::parse() function, which is crucial for parsing grammar specifications into a structured format that the Llama language model can utilize. The tests ensure that given a grammar specification string, the function returns a parse_state object with accurate symbol IDs and grammar rules. The parse_state object contains a map of symbol names to their unique IDs (symbol_ids) and a vector of grammar rules (rules), where each rule is represented as a sequence of llama_grammar_element structs.

Read more

Optimization Tests

References: tests/test-opt.cpp

• • •
Architecture Diagram for Optimization Tests
Architecture Diagram for Optimization Tests

The test-opt.cpp file validates the Adam optimization algorithm within the ggml library by ensuring it effectively minimizes a defined objective function. The test involves creating three random tensors and using them to form an objective function that represents the sum of squared differences between the result of a matrix multiplication and a target tensor. The steps taken in the test are:

Read more

Miscellaneous Tests

• • •
Architecture Diagram for Miscellaneous Tests
Architecture Diagram for Miscellaneous Tests

The test-autorelease.cpp ensures the proper release of resources within a multithreaded environment. It involves the following key actions:

Read more

Utility Scripts

References: scripts

Utility scripts within the scripts directory facilitate a range of operations crucial for the maintenance and functionality of the llama.cpp project. These scripts automate tasks such as downloading datasets, checking script requirements, generating author lists, and deploying servers.

Read more

Model Conversion and Quantization Utilities

• • •
Architecture Diagram for Model Conversion and Quantization Utilities
Architecture Diagram for Model Conversion and Quantization Utilities

The …/convert-gg.sh script automates the conversion of pre-trained language models into the GGML format, a requisite step for utilizing these models within the LLaMA framework. The script invokes convert.py and convert-falcon-hf-to-gguf.py for different model types, including LLaMA v1, LLaMA v2, CodeLlama, and Falcon models. The output models are stored in the models directory with filenames indicative of their version and precision, such as f16 for 16-bit floating-point representation.

Read more

Performance Testing and Benchmarking Utilities

• • •
Architecture Diagram for Performance Testing and Benchmarking Utilities
Architecture Diagram for Performance Testing and Benchmarking Utilities

The …/compare-commits.sh script automates the comparison of llama-bench performance across two different commits. It executes the benchmarking tool for each commit, storing results in an SQLite database, and then leverages …/compare-llama-bench.py to generate a performance comparison table. This utility is crucial for assessing the impact of code changes on model performance.

Read more

Dataset Management Utilities

• • •
Architecture Diagram for Dataset Management Utilities
Architecture Diagram for Dataset Management Utilities

The dataset management utilities within the scripts directory facilitate the acquisition and preparation of various datasets for language modeling tasks. These scripts automate the process of downloading datasets from external sources and provide usage examples for the perplexity command, which is used to evaluate the performance of language models on these datasets.

Read more

Build and Deployment Utilities

• • •
Architecture Diagram for Build and Deployment Utilities
Architecture Diagram for Build and Deployment Utilities

The …/build-info.sh script generates build information as C preprocessor macros, which are then used to provide version and build details within the LLAMA project. It retrieves the build number and commit hash from the Git repository, compiler information, and target platform using the $CC command. The output includes macros like LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, and LLAMA_BUILD_TARGET.

Read more

Synchronization and Maintenance Utilities

• • •
Architecture Diagram for Synchronization and Maintenance Utilities
Architecture Diagram for Synchronization and Maintenance Utilities

The sync-ggml.sh script automates the process of updating the current project with the latest changes from the ggml directory. It performs the following tasks:

Read more

Miscellaneous Utility Scripts

• • •
Architecture Diagram for Miscellaneous Utility Scripts
Architecture Diagram for Miscellaneous Utility Scripts

The …/check-requirements.sh script automates the validation of Python dependencies for the conversion scripts within the llama.cpp project. It performs checks in isolated virtual environments to ensure that each script can be imported without ImportErrors. The script also verifies the inclusion of sub-requirements in the top-level requirements.txt and warns against the pinning of exact release versions in requirement files. It supports optional arguments for specifying a working directory and disabling cleanup of temporary files.

Read more

Python Library for GGUF

References: gguf-py

• • •
Architecture Diagram for Python Library for GGUF
Architecture Diagram for Python Library for GGUF

The Python library for GGUF provides a suite of tools for interacting with the Generalized Graph Universal Format, which is a binary format designed for storing tensors and related metadata. The library is structured to support the creation, manipulation, and reading of GGUF files, which are essential for machine learning model data interchange.

Read more

Core GGUF Package Functionality

References: gguf-py/gguf

The gguf package provides a set of classes and methods for interacting with GGUF files, which are used to store and manage tensor data and metadata for machine learning models. The package includes the GGUFReader and GGUFWriter classes for reading and writing GGUF files, respectively. The TensorNameMap class manages the mapping between tensor names and model tensors, facilitating the identification and manipulation of tensors within a model's architecture.

Read more

GGUF Utility Scripts

References: gguf-py/scripts

The …/scripts directory equips users with a suite of Python scripts to handle various operations on GGUF files. These operations include endian conversion, metadata inspection and modification, and the creation of new GGUF files with updated metadata.

Read more

GGUF Examples and Usage

References: gguf-py/examples

• • •
Architecture Diagram for GGUF Examples and Usage
Architecture Diagram for GGUF Examples and Usage

The …/examples directory provides practical examples of how to interact with GGUF files using the GGUFReader and GGUFWriter classes. These examples serve as a guide for users to understand the process of reading from and writing to GGUF files, which are used for storing and sharing data in the Generalized Graph Universal Format.

Read more

GGUF Testing Framework

References: gguf-py/tests

• • •
Architecture Diagram for GGUF Testing Framework
Architecture Diagram for GGUF Testing Framework

The …/tests directory is designated for housing the test suite of the gguf-py project, with the current focus on the gguf module. The directory contains a single test file, …/test_gguf.py, which is expected to contain the test cases for the gguf module. As of now, the file includes a placeholder test function, test_write_gguf(), which suggests the intention to test the writing capabilities of the gguf module in the future.

Read more

Common Utilities

References: common

• • •
Architecture Diagram for Common Utilities
Architecture Diagram for Common Utilities

The gpt_params_parse_ex() and gpt_params_parse() functions handle the parsing of command-line arguments, populating the gpt_params structure with model paths, prompts, and sampling parameters. These functions are critical for initializing the Llama language model with user-specified configurations. The gpt_print_usage() function provides users with guidance on the available command-line options.

Read more

Console Interface

• • •
Architecture Diagram for Console Interface
Architecture Diagram for Console Interface

The cross-platform console interface utilities facilitate user interaction with the console across different operating systems. The interface handles initialization, cleanup, display management, and readline functionality, abstracting platform-specific details to provide a unified experience.

Read more

Grammar and Schema Parsing

The grammar-parser.cpp and grammar-parser.h files provide the functionality to parse extended BNF grammars. The parser assigns unique identifiers to each symbol for efficient management and uses recursive functions like parse_sequence() and parse_alternates() to handle nested structures and repetition operators. Error handling is robust, with informative messages for parsing issues, and a print_grammar() function is available for outputting the grammar in a readable format.

Read more

Logging System

References: common/log.h

The Llama project incorporates a logging system that facilitates the tracking of events and messages during execution. The system provides flexibility in logging output, allowing messages to be directed to either files or the console. Developers can control the verbosity and detail of the logs through various macros and runtime functions.

Read more

N-gram Cache

• • •
Architecture Diagram for N-gram Cache
Architecture Diagram for N-gram Cache

The n-gram cache, implemented in …/ngram-cache.cpp, optimizes text generation by storing and retrieving n-gram frequencies and their associated tokens. The cache is a critical component for drafting potential next tokens based on the statistical likelihood of n-gram sequences appearing in the language model's training data.

Read more

Sampling Module

• • •
Architecture Diagram for Sampling Module
Architecture Diagram for Sampling Module

The llama_sampling_context struct manages the state of the sampling process, which includes a history of previously sampled tokens and parameters that influence the selection of the next token. The llama_sampling_params struct within …/sampling.h encapsulates these parameters, such as the number of tokens to remember, the temperature for sampling, and the specific technique to be used, like Top-K or Top-P.

Read more

Training Utilities

• • •
Architecture Diagram for Training Utilities
Architecture Diagram for Training Utilities

In …/train.cpp, the training process is managed through a series of functions that handle the initialization, randomization, and optimization of training states. The train_state struct is pivotal, encapsulating the optimization context and training iterations, as well as the random number generator state for sample shuffling. The init_train_state() and free_train_state() functions are responsible for setting up and tearing down this structure.

Read more

Prompts and Instructions

References: prompts

The prompts directory serves as a repository for textual content designed to facilitate interaction with AI models and assistants. It includes a variety of text files that range from instructional content to conversational examples, each tailored to specific AI functionalities or scenarios.

Read more

Smart Home Assistant Implementation

• • •
Architecture Diagram for Smart Home Assistant Implementation
Architecture Diagram for Smart Home Assistant Implementation

The smart home assistant implemented in …/assistant.txt processes JSON-formatted requests to manage a variety of smart home devices. The assistant supports four request categories: "command", "query", "answer", and "clarify", each corresponding to a different type of interaction with the smart home environment.

Read more

AI Model Interaction Examples

• • •
Architecture Diagram for AI Model Interaction Examples
Architecture Diagram for AI Model Interaction Examples

The AI model interaction examples within the repository demonstrate the conversational capabilities of AI assistants through a series of text-based transcripts. These examples serve as templates or scripts for expected interactions between users and AI models, showcasing the models' natural language understanding and generation abilities. The transcripts are found in files such as …/chat-with-baichuan.txt, …/chat-with-bob.txt, …/chat-with-qwen.txt, …/chat-with-vicuna-v0.txt, …/chat-with-vicuna-v1.txt, and …/chat.txt.

Read more

Advanced AI Model Capabilities

The "DAN" AI model, as described in …/dan-modified.txt and …/dan.txt, is designed to simulate an advanced AI with capabilities beyond the standard constraints of typical AI models. Key features of DAN include:

Read more

Large Language Model (LLM) Concepts

The file …/LLM-questions.txt serves as a resource for understanding key machine learning concepts associated with Large Language Models (LLMs). It contains a curated set of questions that probe into various aspects of LLMs, from foundational elements to advanced mechanisms. These questions are instrumental in guiding users through the complexities of LLMs, offering insights into how these models process and generate language.

Read more

Mnemonics for Language Learning

• • •
Architecture Diagram for Mnemonics for Language Learning
Architecture Diagram for Mnemonics for Language Learning

The file …/mnemonics.txt serves as an educational resource within the codebase, offering Markdown-formatted mnemonics to aid in the learning of kanji characters. The mnemonics are designed to facilitate memory retention by associating each kanji with keywords derived from its components. This approach leverages the cognitive strategy of creating vivid and associative mental images to enhance recall, a technique that is particularly useful for characters that are complex or have abstract meanings.

Read more

Thought-Provoking Questions for AI Discussion

• • •
Architecture Diagram for Thought-Provoking Questions for AI Discussion
Architecture Diagram for Thought-Provoking Questions for AI Discussion

The file located at …/parallel-questions.txt serves as a repository of diverse and thought-provoking questions designed to engage AI models in deep and wide-ranging discussions. These questions span a multitude of subjects, from the whimsical to the profound, challenging the AI's capacity for understanding and generating responses across various domains. The inclusion of such a broad spectrum of topics reflects the intended versatility of AI models in simulating human-like conversational abilities and analytical thinking.

Read more

AI Reasoning and Action Loop

• • •
Architecture Diagram for AI Reasoning and Action Loop
Architecture Diagram for AI Reasoning and Action Loop

The AI system in …/reason-act.txt operates on a loop consisting of Thought, Action, and Observation steps to process and respond to questions. This loop models the AI's reasoning and response generation process:

Read more

Development and Operations

References: .devops

• • •
Architecture Diagram for Development and Operations
Architecture Diagram for Development and Operations

Docker build files within .devops serve as the backbone for setting up various environments tailored to the Llama language model project's needs. These environments enable the project to be built, deployed, and executed across different hardware and software configurations, with specialized support for CUDA, ROCm, Intel OneAPI, and Vulkan. The Dockerfiles are designed to create isolated and reproducible build environments that encapsulate all the necessary dependencies and configurations required for the project.

Read more

Docker Build Environment Setup

• • •
Architecture Diagram for Docker Build Environment Setup
Architecture Diagram for Docker Build Environment Setup

Docker build files are utilized to create consistent environments for building, deploying, and executing the Llama language model project. These environments are tailored to support various computational backends such as CUDA, ROCm, Intel OneAPI, and Vulkan, which are essential for leveraging different hardware acceleration capabilities.

Read more

DevOps Tooling and Automation

References: .devops/tools.sh

The …/tools.sh script acts as a command-line utility facilitating several operations for the Llama language model. It provides a unified interface for tasks such as model conversion, quantization, execution, finetuning, and server deployment. The script interprets command-line arguments to trigger specific functionalities:

Read more

Multimodal Language Model Implementation

References: examples/llava

• • •
Architecture Diagram for Multimodal Language Model Implementation
Architecture Diagram for Multimodal Language Model Implementation

The LLaVA model facilitates the integration of visual data with language processing, enabling the model to handle both text and image inputs. The model leverages the capabilities of the CLIP (Contrastive Language-Image Pre-training) model to process images, which is then combined with the language understanding capabilities of the LLAMA (Large Language Model Meta-Adapter) framework.

Read more

LLaVA Model Core Implementation

• • •
Architecture Diagram for LLaVA Model Core Implementation
Architecture Diagram for LLaVA Model Core Implementation

The llava.cpp and llava.h files provide the core functionality for the LLaVA model, which is designed to create and evaluate image embeddings within the LLAMA framework. The LLaVA model leverages the CLIP model's capabilities to process images and integrate them with textual data, enabling a multimodal approach to language modeling.

Read more

CLIP Integration with LLaVA

• • •
Architecture Diagram for CLIP Integration with LLaVA
Architecture Diagram for CLIP Integration with LLaVA

Integration of the CLIP model with the LLaVA framework is achieved through the clip_model_load() function, which initializes the clip_ctx struct by loading model parameters from a GGUF file located at …/clip.cpp. The function sets up the model context by checking for the presence of text and vision encoders and loading the necessary weights and biases for the vision model. It also accommodates various projector types, such as MLP and LDP, crucial for the multimodal capabilities of LLaVA.

Read more

LLaVA Command-Line Interface

• • •
Architecture Diagram for LLaVA Command-Line Interface
Architecture Diagram for LLaVA Command-Line Interface

The llava-cli executable serves as the interface for interacting with the LLaVA model, which combines the capabilities of the LLAMA language model with vision abilities through CLIP integration. Users can input prompts that may include images, and the executable will generate responses accordingly. Key functionalities include:

Read more

LLaVA Model Conversion Scripts

• • •
Architecture Diagram for LLaVA Model Conversion Scripts
Architecture Diagram for LLaVA Model Conversion Scripts

The llava-surgery-v2.py and llava-surgery.py scripts serve as tools for preparing the LLaVA model components for conversion to the LLaMA GGUF format. They perform tasks such as cleaning the vision tower from a checkpoint, extracting multimodal projector tensors, and handling the added_tokens.json file.

Read more

LLaVA Android Integration

• • •
Architecture Diagram for LLaVA Android Integration
Architecture Diagram for LLaVA Android Integration

Integration of the LLaVA model with Android devices leverages scripts to manage the deployment and execution process. The …/adb_run.sh script automates the interaction with an Android device using the Android Debug Bridge (ADB) tool. The script performs several key operations:

Read more

Building LLaVA with CMake

• • •
Architecture Diagram for Building LLaVA with CMake
Architecture Diagram for Building LLaVA with CMake

The build process for the llava library and the llava-cli executable is managed by the CMakeLists.txt file located at …/CMakeLists.txt. The llava library is compiled as both an object library and a static library, with the option to build as a shared library if BUILD_SHARED_LIBS is set. The llava library is linked with the ggml and llama libraries, ensuring necessary functionalities are included.

Read more

LLaVA Model Documentation

• • •
Architecture Diagram for LLaVA Model Documentation
Architecture Diagram for LLaVA Model Documentation

The LLaVA model documentation, located at …/README.md, guides users through the setup and usage of the LLaVA (Large Language and Vision Assistant) model, a multimodal language model capable of processing both text and image inputs. The documentation includes instructions for obtaining pre-converted models, building and running the llava-cli command-line interface, and converting models to the GGUF format. It addresses two versions of the LLaVA model, LLaVA-v1.5 and LLaVA-v1.6, highlighting differences such as context length requirements and prompt templating for non-Vicuna models.

Read more

Android Application Implementation

The Llama Android application is orchestrated through the MainActivity class, which serves as the entry point and orchestrates the user interface using Jetpack Compose. It manages the application's state, including the display of downloadable machine learning models and the provision of user interaction elements such as text input fields and action buttons. The MainActivity class also logs device and application information, contributing to a robust user experience.

Read more

Android C++ Core

In …/cpp, the C++ core of the Llama Android application handles several critical operations to facilitate interaction with the Llama language model on Android devices. The core functionalities include:

Read more

Android Kotlin Components

• • •
Architecture Diagram for Android Kotlin Components
Architecture Diagram for Android Kotlin Components

Lifecycle management of the Llama language model on Android devices is centralized within the Llm class located at …/Llm.kt. This class is responsible for loading and unloading the model, as well as initiating benchmarking and text completion tasks. It interfaces with native C++ code to perform these operations, ensuring that resource management is handled efficiently and that the model's state is maintained correctly across different threads.

Read more

Android UI and Composables

• • •
Architecture Diagram for Android UI and Composables
Architecture Diagram for Android UI and Composables

Jetpack Compose is utilized in …/theme to implement the user interface of the Llama Android application. The UI adapts to system settings for light and dark modes and supports dynamic color theming on devices running Android 12 and above. The theme customization is managed through the LlamaAndroidTheme function, which applies the appropriate color scheme and updates the status bar appearance.

Read more

Android Build Configuration

Gradle Kotlin scripts serve as the backbone for configuring the Llama Android application's build process. The scripts define the application's SDK requirements, build types, and dependencies, ensuring compatibility with the Android platform and facilitating the use of Kotlin as the primary programming language.

Read more

Batched Text Generation

References: examples/batched

• • •
Architecture Diagram for Batched Text Generation
Architecture Diagram for Batched Text Generation

Leveraging the llama.cpp library, the batched text generation process is designed to initialize and utilize a large language model (LLM) for generating multiple text sequences in parallel. The workflow includes:

Read more

GGUF Library Usage

References: examples/gguf

The gguf library is utilized to demonstrate the writing and reading of GGUF data files in …/gguf.cpp. The file includes functions like gguf_ex_write, gguf_ex_read_0, and gguf_ex_read_1 to showcase these capabilities.

Read more

Lookup Cache Functionality

References: examples/lookup

• • •
Architecture Diagram for Lookup Cache Functionality
Architecture Diagram for Lookup Cache Functionality

The llama_ngram_cache component enhances language model performance by caching n-gram lookups, which are sequences of tokens used to predict subsequent text. This caching mechanism reduces the need for repeated and computationally expensive n-gram computations during text generation.

Read more

Cache Creation and Management

• • •
Architecture Diagram for Cache Creation and Management
Architecture Diagram for Cache Creation and Management

The llama_ngram_cache component is utilized to create a lookup cache, enhancing the performance of language models by minimizing the frequency of computationally expensive n-gram lookups. The cache is populated with tokenized prompts through the llama_ngram_cache_update() function, which accepts the tokens, cache sizes, and an update flag. Once updated, the cache is persisted to disk using llama_ngram_cache_save(), specifying the output file path. This process involves several steps:

Read more

Cache Merging

• • •
Architecture Diagram for Cache Merging
Architecture Diagram for Cache Merging

Merging multiple lookup cache files into a single file is facilitated by the lookup-merge.cpp program, which takes a list of input cache files and combines them into one output cache file. The process involves:

Read more

Cache Performance Analysis

• • •
Architecture Diagram for Cache Performance Analysis
Architecture Diagram for Cache Performance Analysis

The lookup-stats.cpp program serves as a performance analysis tool for the token lookup functionality within the Llama language model. It operates by loading a language model, tokenizing an input prompt, and simulating text generation through drafting and accepting tokens. The program is designed to collect and report key performance metrics, which are crucial for evaluating and optimizing the model's efficiency.

Read more

Lookup Cache Utilization in Inference

• • •
Architecture Diagram for Lookup Cache Utilization in Inference
Architecture Diagram for Lookup Cache Utilization in Inference

Utilizing llama_ngram_cache during language model inference is demonstrated in …/lookup.cpp, which showcases the process of token generation and n-gram caching. The example highlights the integration of n-gram caches within the inference workflow, emphasizing their role in improving the efficiency and performance of token prediction.

Read more

Python Requirements for Conversion

References: requirements

• • •
Architecture Diagram for Python Requirements for Conversion
Architecture Diagram for Python Requirements for Conversion

The llama.cpp project utilizes a set of Python dependencies to facilitate the conversion of various language models to different formats. These dependencies are essential for numerical operations, text tokenization, model handling, and serialization of structured data. The conversion processes are supported by libraries such as numpy for array manipulations, sentencepiece for tokenization, transformers for handling pre-trained models, gguf for working with Google General Universal Format, and protobuf for data serialization.

Read more

General Conversion Dependencies

• • •
Architecture Diagram for General Conversion Dependencies
Architecture Diagram for General Conversion Dependencies

The llama.cpp project relies on a set of Python libraries to facilitate the conversion of language models and data formats. The dependencies are specified in …/requirements-convert.txt and include:

Read more

Hugging Face to GGUF Conversion Dependencies

• • •
Architecture Diagram for Hugging Face to GGUF Conversion Dependencies
Architecture Diagram for Hugging Face to GGUF Conversion Dependencies

For the conversion of Hugging Face models to the Google General Universal Format (GGUF), two Python dependencies are crucial: torch and einops. The standard requirement for torch is any version compatible with 2.1.1, as indicated by the version constraint in …/requirements-convert-hf-to-gguf.txt. Similarly, einops is required to be any compatible version with 0.7.0, denoted by the same constraints in the requirements file.

Read more

LLAMA GGML to GGUF Conversion Dependencies

• • •
Architecture Diagram for LLAMA GGML to GGUF Conversion Dependencies
Architecture Diagram for LLAMA GGML to GGUF Conversion Dependencies

The conversion of LLAMA GGML models to GGUF format relies on a set of Python libraries detailed in …/requirements-convert-llama-ggml-to-gguf.txt. This file itself points to another requirements file, …/requirements-convert.txt, which likely contains the actual list of dependencies. The dependencies specified are essential for the conversion process, ensuring compatibility and functionality when transitioning between these two model formats. The conversion process is a critical step for model deployment and interoperability within different parts of the Llama project.

Read more

LORA to GGML Conversion Dependencies

• • •
Architecture Diagram for LORA to GGML Conversion Dependencies
Architecture Diagram for LORA to GGML Conversion Dependencies

The conversion of LORA models to the GGML format relies on the PyTorch library, specifically version 2.1.1 as indicated in …/requirements-convert-lora-to-ggml.txt. PyTorch provides the necessary functionalities for handling tensor operations which are essential during the conversion process. The conversion likely involves manipulating the model's weights and parameters, which are typically stored as tensors in PyTorch.

Read more

Persimmon to GGUF Conversion Dependencies

• • •
Architecture Diagram for Persimmon to GGUF Conversion Dependencies
Architecture Diagram for Persimmon to GGUF Conversion Dependencies

Conversion of Persimmon models to the GGUF format relies on the Python library torch. The specific version required for this conversion process is 2.1.1 or a compatible version, as indicated in the requirements file located at …/requirements-convert-persimmon-to-gguf.txt. This dependency is crucial for handling the neural network operations that are part of the Persimmon model's architecture.

Read more

GGML and SPM Headers

References: spm-headers

• • •
Architecture Diagram for GGML and SPM Headers
Architecture Diagram for GGML and SPM Headers

The spm-headers directory serves as the nexus for the foundational components of the GGML and the Llama language model. It encapsulates the essential data structures and interfaces required for tensor manipulation, memory management, hardware abstraction, and model interaction.

Read more

GGML Core Functionality

References: spm-headers/ggml.h

The ggml.h header file is central to the GGML library, providing the necessary components for tensor manipulation and operations. The ggml_tensor struct is the primary data structure, representing multi-dimensional arrays essential for numerical computations in machine learning. Core tensor operations facilitated by the library include addition (ggml_add()), multiplication (ggml_mul()), summation (ggml_sum()), and transposition (ggml_transpose()), which are fundamental to neural network computations.

Read more

GGML Memory Management

• • •
Architecture Diagram for GGML Memory Management
Architecture Diagram for GGML Memory Management

The ggml-alloc.h file introduces a custom memory allocator for the GGML framework, designed to optimize memory usage and performance. The allocator is initialized through the ggml_init() function, which configures the allocator's behavior based on the provided ggml_init_params structure. This initialization is crucial as it prepares the allocator for subsequent tensor allocations within the GGML context.

Read more

GGML Hardware Abstraction Layer

• • •
Architecture Diagram for GGML Hardware Abstraction Layer
Architecture Diagram for GGML Hardware Abstraction Layer

The ggml_backend struct in …/ggml-backend.h encapsulates the hardware abstraction layer for the GGML library, enabling the execution of operations across different hardware platforms. This struct is pivotal in ensuring that the library can leverage the specific computational capabilities of CPUs, GPUs, and potentially other accelerates without the need for the calling code to manage these details.

Read more

Llama Language Model Interface

• • •
Architecture Diagram for Llama Language Model Interface
Architecture Diagram for Llama Language Model Interface

Interfacing with the Llama language model is facilitated through the Llama class, which serves as the primary access point for key operations such as model loading, text generation, and perplexity evaluation. The class is defined in …/llama.h and encapsulates the following methods:

Read more